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Abstract

We combine the ideas of two high-performing SQuAD models, Bidirectional At-
tention Flow (BiDAF) and Bilateral Multi-Perspective Matching (BiMPM), and
propose a new framework, BiDAF-inspired Preferential Multi-perspective Match-
ing (BPMPM) for the question answering task. In particular, we consider multiple
strategies when matching context and question embeddings in both Context-To-
Question and Question-To-Context directions, apply a preferential rule when ag-
gregating their results and aim for a more comprehensive view of the interaction
between two sequences. We further refine the model using character-level embed-
dings in the Encoder Layer to better handle out-of-vocabulary words, Dynamic
Pointing Decoder to recover from local maximum corresponding to initial incor-
rect guess in the Output layer and smarter span selection at test time.
Best Dev Score F1: 0.75711 EM: 0.6574

1 Introduction

Reading comprehension is a trending topic in natural language processing. The goal is to make
machines able to “understand” the meaning of texts in general using deep learning techniques. Stan-
ford Question Answering Dataset (SQuAD) is a new reading comprehension dataset that consists
of questions posed by crowdworkers on a set of Wikipedia articles. The answer to each question is
directly taken from the corresponding passage [10]. Since SQuAD was released, researchers have
composed various approaches to this problem and made huge breakthroughs.

In this project, we explore and develop several deep learning systems to answer the questions in
SQuAD with higher accuracies. We start with the baseline model containing a RNN encoding
layer, a basic attention layer, and a output layer. A character-level CNN layer is added to obtain
character-level encodings. After investigating Bidirectional Attention Flow (BiDAF) model and Bi-
lateral Multi-Perspective Matching (BiMPM), we design a new architecture named BiDAF-inspired
Preferential Multi-perspective Matching (BPMPM). We implement Dynamic Pointing Decoder to
escape initial local maxima corresponding to incorrect answers [4]. The numerical measurement
metrics we use are F1 and Exact Match (EM) scores.

2 Background

Attention mechanisms are becoming the best practices for sequence-to-sequence models in natural
language processing and have shown remarkable success when applied to reading comprehension
tasks. Attention models such as Bidirectional Attention Flow (BiDAF), Dynamic Coattention Net-
work and Self-attention have all achieved state-of-the-art performance on the SQuAD dataset. The
trend towards more complex attention is still continuing. Thus, we decide to investigate the effects
of different attention types in extracting relevant aspects from sentences and revamp the attention
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layer in the baseline model for SQuAD by incorporating core ideas of various attention mechanisms.
Furthermore, we also seek to complement the attention based model with richer encodings from the
input layer and smarter decision-making in the output layer.

3 Approach

3.1 Architecture overview

Our model consists of five layers:

1. Character-Level Embedding Layer generates character-level embedding by feeding each
word from the context (or question) into a Convolutional Neural Network (CNN).

2. LSTM Encoder Layer maps each word into its pre-trained vector representation (GloVe)
and concatenates it with its corresponding character-level embedding obtained from the
first layer. The hybrid representation is then fed into a 1-layer bidirectional LSTM shared
between the context and the question.

3. Matching Layer matches the context and question using four different strategies and ag-
gregates their matching scores to produce a blended query-aware context representation.

4. Modeling Layer employs another Bidirectional LSTM to further encode the query-aware
context representation.

5. Output Layer predicts the start and end position of the answer to the question.

3.2 Character Level Embedding Layer

3.2.1 Motivation

In recent works on language processing, many people apply a sequence of fixed-dimension word
embeddings to represent the input text. To get the word embedding for each word, people usually
use pre-trained word vectors like GloVe and Word2Vec. However, since these word vectors are
trained using some specific corpora, they are likely to suffer out-of-vocabulary (OOV) problem
when an unseen word appear during the test time [6]. To solve this issue, we want to extract the
character-level features from each word to form a distributed representation.

3.2.2 Advantages

As mentioned in the previous section, the main advantage of using character-level encodings is that
it allows us to condition on the internal structure of the words, which helps us deal with words that
are not in the current vocabulary (i.e. GloVe).

3.2.3 Implementation Details

We first construct two new dictionaries char2id and id2char which help us encode the charac-
ters in the text. Suppose the dictionaries are constructed using an alphabet with sizem, the character
embedding size is dc, and the word w = [c1, c2, . . . , cL] ∈ RL. Let l0 be the parameter which
represents the maximal number of characters for a word. Each word is transformed to a sequence of
characters of fixed length l0, either by padding zeros or chopping the tail. Then the character-level
embedding for w is [e1, e2, . . . , el0 ] ∈ Rl0×dc , which is the input of convolution layer of our CNN.
Then we obtain a sequence of of hidden representations h1,h2, . . . ,hl0 ∈ Rfilters by applying an
appropriate number of filters to each window of [e1, e2, . . . , el0 ] and using ReLU activation function
to introduce nonlinearities. Finally, we use max-pooling algorithm in the pooling layer to get the re-
sult embchar(w). The next step is to concatenate the character-level embedding for w, embchar(w),
and the word-level embedding embword(w) obtained from GloVe.

Based on the study of distribution of word lengths in English, we figure out that the average word
length for English is 8.23, with approximately 69.1% of words have 10 or fewer letters [7]. In our
model, we choose 10 as the value of l0. The size m of our character alphabet is 70, consisting of 26
lower-case English letters, 10 digits, and 34 other characters.
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The approach described above constructs a two-dimensional convolutional layer, with 4-d in-
puts of shape [batch size, context length, word length, character embedding size]. We also con-
struct an one-dimensional convolutional layer, with a flattened input of shape [batch size, con-
text length*word length, character embedding size], and apply the same pooling technique. The
results generated by these two approaches are combined using weighted sum.

3.3 LSTM Encoder Layer

3.3.1 Highway networks

We experiment with highway networks that allow unimpeded information flow across several layers
[9]. We pass the concatenation of character-level and word-level encodings to the RNN-based high-
way networks. Suppose for a plain feed-forward neural network, we have y = H(x,WH), where
x is the input and H is the nonlinearity. To build a highway network, we add a transform gate T and
a carry gate C. Here T and C are both nonlinear transformations:

y = H(x,WH) · T (x,WT) + x · C(x,WC) (1)

where T and C express how much of the output is produced by transforming the input and carrying
it, respectively [9]. We simplify the equation by setting C = T − 1, which gives:

y = H(x,WH) · T (x,WT) + x · (1− T (x,WT)) (2)

3.3.2 Trainable word embeddings

The motivation is that, for different corpora, the trained word vectors may vary. When we train
the model using word embeddings obtained from fixed word vectors trained on another corpus,
the performance might get worse depending on how much the two corpora are different from each
other. Since the dataset used in our project is not the same as GloVe, it is reasonable to make the
word embeddings trainable. The word embedding variable is initialized with the pre-trained word
vectors loaded from GloVe. After a few iterations, we can observe that if we plot the original word
vectors and the retrained word vectors in the same space, the position of each word vector has been
changed. However, these changes are not very obvious, and the relationships among these word
vectors are almost preserved, as shown in Appendix A (figure 6).

Finally, each context is represented by a sequence of (d+ dc)-dimensional word embeddings x1, ...,
xN and each question by a sequence of (d+dc)-dimensional word embeddings y1, ..., yM . We then
feed the embeddings into a 1-layer bidirectional LSTM (shared between the context and question):

{−→c1 ,←−c1 , ...,−→cN ,←−cN} = biLSTM({x1, ..., xN}) (3)

{−→q1 ,←−q1 , ...,−→qN ,←−qN} = biLSTM({y1, ..., yN}) (4)

3.4 Matching Layer: BiDAF-inspired Preferential Multi-perspective Matching

3.4.1 Multi-strategic Multi-perspective Matching

The matching layer is the key component of our model and is inspired by two attention mechanisms,
Bidirectional Attention Flow (BiDAF) [2] and Bilateral Multi-perspective Matching (BiMPM) [3].
First, We define a multi-perspective matching operation as follows:

m = fm(c, q;W ) ∈ Rl, c, q ∈ Rh,W ∈ Rl×h (5)

where l denotes the number of perspectives of a particular matching strategy. Each element mk of
m is the matching score from the k − th perspective of this strategy and calculated by the cosine
similarity of the two weighted vectors:

mk = cosine(Wk ◦ c,Wk ◦ q) (6)
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where ◦ is element-wise multiplication and Wk is the k-th row (or perspective) of W .

Second, We use four different matching strategies just as the BiMPM model does shown in 1:

Figure 1: Diagram for strategies used in Preferential Multi-perspective Matching: (a) full matching
(b) max-pooling matching (c) attentive matching (d) max-attentive matching. The max-pooling one
has the largest number of perspectives.

Full matching: Each forward (or backward) context hidden state −→ci (or←−ci ) is matched against the
last time step of the forward (or backward) question hidden state:

−−−→
mfull

i = fm(−→ci ,−→qM ;W 1) ∈ Rl,W 1 ∈ Rl×h (7)

←−−−
mfull

i = fm(←−ci ,←−q1 ;W 2) ∈ Rl,W 2 ∈ Rl×h (8)

Max-pooling matching: Each forward (or backward) context hidden state −→ci (or ←−ci ) is matched
against each forward (or backward) question hidden state −→qj (or←−qj ):

−−−→
mmax

i = max
j=1,...,M

fm(−→ci ,−→qj ;W 3) ∈ Rl,W 3 ∈ R2l×h (9)

←−−−
mmax

i = max
j=1,...,M

fm(←−ci ,←−qj ;W 4) ∈ Rl,W 4 ∈ R2l×h (10)

Note we assign more weight to this matching strategy by doubling the number of its perspectives.

Attentive matching: First, calculate cosine similarities between each forward (or backward) context
hidden state −→ci (or←−ci ) and each forward (or backward) question hidden state −→qj (or←−qj )

−−→αi,j = cosine(−→ci ,−→qj ), j = 1, ...,M (11)

←−−αi,j = cosine(←−ci ,←−qj ), j = 1, ...,M (12)
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Second, take←−−αi,j (or−−→αi,j) as the weight of−→qj (or←−qj ) and calculate the attentive matching vector for
the question sequence by taking the weighted sum of all question hidden states:

−−−→
qmean
i =

∑M
j=1
−−→αi,j · −→qj∑M

j=1
−−→αi,j

(13)

←−−−
qmean
i =

∑M
j=1
←−−αi,j · ←−qj∑M

j=1
←−−αi,j

(14)

Lastly, each forward (or backward) context hidden state −→ci (or ←−ci ) is matched against the corre-
sponding attentive matching vector:

−−−→
mattn

i = fm(−→ci ,
−−−→
qmean
i ;W 5) ∈ Rl,W 5 ∈ Rl×h (15)

←−−−
mattn

i = fm(←−ci ,
←−−−
qmean
i ;W 6) ∈ Rl,W 6 ∈ Rl×h (16)

Max-attentive matching: Instead of weighed summing all question hidden states, this strategy
selects the state with the largest cosine similarity as the attentive matching vector:

−−−−−−−→
mmax−attn

i = fm(−→ci ,
−−−→
qmax
i ;W 7) ∈ Rl,W 7 ∈ Rl×h (17)

←−−−−−−−
mmax−attn

i = fm(←−ci ,
←−−−
qmax
i ;W 8) ∈ Rl,W 8 ∈ Rl×h (18)

Next, the forward/backward matching scores from all perspectives are concatenated to obtain the
question-aware blended representation ai for the Context-to-Question(C2Q) Matching:

ai = [
−−−→
mfull

i ;
−−−→
mmax

i ;
−−−→
mattn

i ;
−−−−−−−→
mmax−attn

i ;
←−−−
mfull

i ;
←−−−
mmax

i ;
←−−−
mattn

i ;
←−−−−−−−
mmax−attn

i ] ∈ R2(l+2l+l+l) = R10l

(19)

Then, to mimic the bidirectional attention flow in the BiDAF model, repeat the same process for
the reverse direction and obtain the context-aware blended representation bj for the Question-to-
Context(Q2C) Matching:

b = max
j=1,...,M

bj ∈ R10l (20)

where maxj=1,...,M is the element-wise maximum.

Finally, we obtain the output ci of the Matching Layer by blending the C2Q Matching vector and
Q2C Matching vector:

ci = ai ◦ b ∈ R10l (21)

where ◦ is the element-wise multiplication.

3.5 Modeling Layer

We feed the matching representation into three layers of bi-directional LSTM and the result is then
passed onto the output layer for prediction.
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3.6 Output Layer: Dynamic Pointing Decoder with Smarter Span Selection

Dynamic Pointing Decoder (DPD): Since there might exist several candidate spans in the context,
it’s likely the model gets stuck in some initial local maximum [4]. With an iterative procedure which
takes turns in predicting the start position and end position, our model is able to escape that initial
incorrect guess.

Smarter Span Selection: We choose the start and end location pair (i, j) with i <= j <= i + 15
that maximizes pstart(i), pend(j), so that the predicted end position will be more reasonable and
never occur before the start location [5].

4 Experiments

Figure 2: Distribution of context length, question length and answer position of the training data.

After exploring the distribution of context length and question length of the training data shown in
2, we set context len = 300 and question len = 30 to be the cutoff when truncating
long contexts and questions. This helps decrease the model size for better runtime without losing
too much information from the original sequences. Since the answer is more likely to appear at the
beginning of the context, the truncation occur more often from the end (with a probability of 2

3 ).

We’ve also experimented with different hyperparameter choices and end up with the following:
learning rate = 0.001, dropout = 0.15, embedding size (size of the pre-trained
GloVe word vectors) = 300. We use AdamOptimizer as the optimization algorithm.

4.1 Evaluation Metrics

We use F1 and Exact Match (EM) scores to evaluate the prediction accuracy of the improved
model versions. Besides, we also care about time of convergence and seconds per batch (with 100
examples) to pursue fast learning. Total number of parameters is also key to the low-storage goal.

4.2 Results

To investigate the effect of each new component, we add each improvement incrementally to see how
much it contributes to the overall performance. In the end, we combine these components into a final
model, and build an ensemble of three with different hyperparameters to seek more robustness.

Table 1: Performance Comparison.

Model Best F1 Best EM Time of Convergence Seconds per Batch

Baseline 0.39458 0.32963 15000 iterations 1.3s
BiDAF + DPD 0.57567 0.43047 9000 iterations 1.5s
BiDAF + CNN + DPD 0.73753 0.63217 4000 iterations 1.7s
BiMPM + CNN +DPD 0.51079 0.37937 5000 iterations 2.2s
BPMPM + CNN + DPD 0.58778 0.44308 4000 iterations 4.7s
Ensemble 0.75071 0.64238 - -
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4.2.1 Performance boost from character-level embeddings
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Figure 3: Performance boost from character-level embeddings

Figure 3 shows that with character-level encoding, the model achieves higher F1 and EM scores
with much fewer iterations and the time needed to process each batch increases minimally.

4.2.2 Performance boost from BiDAF-inspired Preferential variant of BiMPM
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Figure 4: Performance boost from BiDAF-inspired Preferential variant of BiMPM

Figure 4 shows that applying the matching operation in both Context-to-Question and Question-to-
Context directions, along with a weighting rule that prefers the max-pooling over other strategies,
also contributes towards the model performance at the expense of slightly longer batch time.

4.2.3 Comparison between BiDAF and BiDAF-inspired Preferential variant of BiMPM

Here’s one example where BiDAF-inspired Preferential variant of BiMPM outperforms BiDAF:

CONTEXT: in early 2012, nfl commissioner roger goodell stated that
the league planned to make the 50th super bowl ‘‘spectacular’’ and
that it would be ‘‘an important game for us as a league’’..
QUESTION: what one word did the nfl commissioner use to describe
what super bowl 50 was intended to be?
TRUE ANSWER: spectacular
PREDICTED ANSWER from BiDAF: an important game for us as a league
PREDICTED ANSWER from BiMPM: spectacular

Although both models successfully locate the NFL commissioner’s description of Super Bowl 50
to answer the question, only the BiDAF-inspired Preferential variant of BiMPM identifies the im-
portant requirement from the question –“one word”– that qualifies the answer. Since the BiMPM
employs multiple functions when calculating the attention distribution, it gains a more comprehen-
sive understanding of the question.

However, we also notice that the standard BiDAF model is a much more efficient learner. The loss
decreases steadily from the beginning and it achieves a dev F1 score of 0.55 just with 500 iterations.
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4.2.4 Visualization of Multi-Strategic Multi-perspective Matching

To understand how different matching strategies work, we first implement the standard BiMPM
model and visualize their matching scores in heat map. 5 shows an example where the matching
score has the largest absolute value at true/predicted answer start/end with the Full Matching strat-
egy. Moreover, each perspective provides different advice for the matching.
To further investigate which strategy makes the best decision, we compare the scores distribution of
all strategies. 5 reveals that the Max-pooling Matching strategy is the most confident and reliable.
Thus, we assign higher weight to this strategy in our preferential variant of BiMPM.

Figure 5: Full matching and Max-pooling matching scores for forward direction

5 Error Analysis

Some interesting mistakes that our model has made reveal its weaknesses and suggest how it can be
further improved in the future:

CONTEXT: during the period in which the negotiations were being
conducted, tesla said that efforts had been made to steal the
invention. his room had been entered and his papers had been
scrutinized, but the thieves, or spies, left empty-handed. ...
QUESTION: according to tesla what had been gone over by the
thieves, or spies who entered his room?
TRUE ANSWER: his papers
PREDICTED ANSWER: empty-handed
Explanation: The model predicts the answer “empty-handed” because it pays attention to “the
thieves, or spies”. It fails to recognize that “gone over” is actually the synonym of “scrutinize” and
that the question is looking for information about the object of the action rather than the subject.
Improvement: Use additional features such as the voice of the sentence (active or passive). Use
fine-tuned word vector representations that capture semantic similarity.

CONTEXT: ... the english channel, the irish channel and most
of the north sea were dry land, mainly because sea level was
approximately 120 m (390 ft) lower than today.
QUESTION: besides the north sea and the irish channel, what else
was lowered in the last cold phase?
TRUE ANSWER: english channel
PREDICTED ANSWER: dry land
Explanation: The model predicts the answer “dry land” as it looks for adjacent or parallel words
for “north sea” and “irish channel”. However, it fails to tell the difference between nominative case
and accusative case. In fact, the true answer “english channel” corresponds to the nominative case
and occurs much earlier in the sentence.
Improvement: Use additional features such as the Part-Of-Speech tag and the casing of words.

8



6 Conclusion

In this project, we explore the effects of different attention mechanisms, Bidirectional Attention
Flow (BiDAF) and Bilateral Multi-Perspective Matching (BiMPM) in particular, on improving read-
ing comprehension model. We compare their strengths and develop a variant by leveraging the ad-
vantages of both frameworks. All models use a CNN layer to find the character-level encodings
for words in the texts. The best F1 and EM scores given by a single model (BiDAF+CNN+DPD)
are 0.73753 and 0.63217, respectively. The ensemble of these models improves F1 score by around
0.013, which reaches 0.75071. As mentioned in the Error Analysis section, future work involves
using additional features and fine-tuned word vector representations. We may also run more experi-
ments to find better hyper-parameters for our models.
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Appendix A

Figure 6: sample retrained word embeddings vs GloVe
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