AN ANALYSIS OF VARIOUS IMAGE INPAINTING METHODS
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Inpainting missing regions makes possible appli- Context Encoder e Input: center cropped image
cations such as remoYal of unwanted ol?]ects. fr.om an e Output: input image with all holes completed
image and reconstruction of occluded regions in image- B Ercoder > < Decader > o Encoder/Decoder connected via a channel-wise fully-
based 3D scenes. However, filling in the holes of an connected layer: each unit in the decoder can reason o S
incomplete image with reasonable contents that is con- [ = oG —— . We trained our baseline Context Encoder model (with
sistentpboth glogbally and locally is a very challenging | méﬁ @9N 9@9@ @ ' ' A T about the entire Image content only L2 loss) for 40 epochs on GPU using 5000 training
\task. ] e Simple regression towards the ground truth (£,..)is | | images. Then we trained another Context Encoder mo-
; not sufficient: multiple context-consistent ways to fill- | | del with joint loss for 40 epochs on the same dataset.
\ 4 i 34 D B 252 1 Loss.G Loss_G_D Loss_G_L2
DATA S ET .o Lo >32?6 z@ > in the hole o] B ]
e Microsoft COCO 2017 Train/Val/Test, 256 x 256 RGB . (E;W)Ad “ N ([:m’ t = e Solution: define joint loss £ = ApecLrec + AadvLadvy- 2] Oi -
images - - As indicates the “weights” of the losses. ) o]
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e Normalized and resized to 128 x 128

Blue: Only reconstruction loss (L2); Orange: Joint loss (L2+adversarial)

We randomly sample 8 validation images to show the

o Center 64 x64 square cropped
performance progress of the two models over epochs.

e Completion Network: encoder-decoder structure

Sample Batch of Preprocessed Real Images

i e Dual discriminators (global + local): generate novel - —
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oo Outpr % ___________________ " . 1"‘ o Training split into three phases: train completion 40 Epoch
[ Local Discriminator | network; train the discriminators; train jointly

40 Epochs

e Poisson blending: remove color inconsistencies Joint Loss [i#

Contextual Attention Global-Local Net

So far, we trained our Global-Local Net for 6+3+25=34
epochs on GPU using 5000 training images.

S matching features of missing pixels (foreground) to Below is a random validation image inferenced at dif-
DDDDEQE?”QUHHN | NHHDDDDQQQQVDDHHH A I surroundings (background) ferent epochs. Initially, generator highly prefers gray

BACKCRGI , ar g = \}Dm:== pixels to conservatively lower £,... Gradually, gradi-
Raw  Inputand Mask Coarse Result InpainfingReealk j(T— " . . . .
Goarse Network Refnemen Network _wacwe | @ Measurement: cosine similarity ents are learned. Later on, colors are learned.

o Contextual attention layer: explicitly attend on re-
Jo=— lated feature patches at distant spatial locations, ie.
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Ex1st1ng inpainting approaches mainly fall into th- “ﬂ S Syl iy = (H}Cz:z” o T )
ree categories: g | H . . . Real
_Roconstucen \ ﬂ ooamm L&y e Pixel-wise attention score: Image
e Diffusion-based approaches: : Sty = SOFtMazyr (NS y.ar )
— can only fill-in tiny holes ol o R . Cropped
— focus on low-level features — less powerful . Fur‘ther encourage coherency of attention by propa- Image
\_ gation (fusion)
e Patch-based approaches: Net
— cannot generate novel objects that do not exist in _ N\ _ N\ Output
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