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1 Introduction

In this project, our focus is on the understanding of utterance and how we can construct computational
models to formalize the inferences about meaning in context as well as the reasoning about the two
rational agents, the pragmatic speaker and the pragmatic listener, which will be defined later. Our
guiding idea is the Rational Speech Acts (RSA) model proposed in [3]. More specifically, in this
project, I’m going to explore and implement an extension of our current RSA model, focusing on the
study of the lexical uncertainty associated with embedded implicatures.

Hypothesis and Related Concepts

The RSA model and its extensions have shown their ability to reason and predict the understand-
ing/interpretation of utterances that contain conversational implicatures, following Grice’s theory.
However, problems for the basic RSA model arise when we encounter embedded implicatures (e.g.
embedded some), where the contexts could be more complicated than those in the examples we
previously analyzed. The reason is that this type of implicatures introduce lexical uncertainty to the
RSA model. The central hypothesis of this paper is that we can improve the basic RSA model to
make it able to work with embedded implicatures as well, by implementing a compositional lexical
uncertainty model based on the work of Bergen et al. and Potts et al. [1, 2, 6], where we are not
presuming the participants to share a “single, fixed lexicon mapping word forms to meanings”. In
this project, I’m going to implement this extension.

RSA model is a quantitative framework for pragmatic reasoning, built on probabilistic models and
consistent with the conversational maxims proposed by Grice [4]. With the RSA model, we can
make quantitative predictions on the human responses of a variety of utterances. In this context,
the literal listener uses the literal meaning of the utterance. Pragmatic speaker wants to deliver
a specific meaning to the listener and reasons about how the listener would interpret the messages.
Pragmatic listener, on the other hand, wants to figure out the meaning the speaker intended to
express and therefore reasons about which meaning would make the speaker to say it in that way.
Embedded implicatures, as proposed in [7], are implicatures “that arise locally, at a sub-locutionary
level, without resulting from an inference in the narrow sense.” In [6], Potts et al. also informally
state that embedded implicatures are cases where “a pragmatically enriched interpretation seems to
be incorporated into the compositional semantics”. Lexical uncertainty occurs when the discourse
participants are not restricted to use a single and fixed lexicon mapping from words to meanings.
Instead, there are multiple readings for the embedded implicature.

This extension of the RSA model allows us to make fewer assumptions on the discourse participants
and hence becomes more applicable in reasoning and solving problems coming from real world
scenario.

Proposed Steps and Expectations

The first step is to study the examples where embedded implicatures challenge our basic RSA model.
The next step is to understand the mechanism of the model proposed by Bergen et al. [1]. Based on
the basic RSA model, I’ll complete the implementation of the lexical uncertainty RSA model, which



is an extension of the RSA model, allowing lexical uncertainty cases. The design of the model should
follow the architecture composed in [1, 6]. Once the new model are able to work, I’m going to test
it using examples where lexical uncertainties are introduced. Besides, I’ll compare my experiment
results with the statistics given in the paper [6]. My expectation is to implement the models composed
in [1, 6]. The extensions should outperform the basic RSA model in utterances where there are
embedded implicatures. It would be ideal if the experiment results are close to those stated in the
paper.

2 Model Description

2.1 Mathematical background

Before diving into the mathematical formulae for the extension, we first recall the fundamental RSA
model as proposed in [3]:

(1) Define the reference game as (R,M, J·K, P, C) where
a. R is the set of states (i.e. r1, r2, · · · ∈ R, where ri represent a state).
b. M is the set of messages (or utterances) (i.e. m1,m2, · · · ∈M , where mi represent an

utterance).
c. J·K is a semantic interpretation function, mapping from meaning to {0, 1}.
d. P is the prior probability distribution over states.
e. C is the cost function, and here we define costs to be non-positive.
and denote the pragmatic listener as L, the pragmatic speaker as S and the literal listener as
L0.

Then we use the following properties to build the RSA model:

(2) a. PL0
(r|m) ∝ δJmK(r)P (r): PL0

(r|m) = JmK(r)·P (r)∑
r′∈RJmK(r′)·P (r′)

b. PS(m|r) ∝ eα·log(PL0
(r|m)+C(m))

c. PL(r|m) ∝ PS(m|r) · P (r)

Now back to the design of the RSA extension that allows the occurrence of lexical uncertainties,
intuitively, we need a new set of parameters to make our model able to carry more information. The
fundamentals of the lexical uncertainty RSA model are then as follows:

(3) The reference game (R,M, J·K, P, C,L, PL) is the basically the same as defined in (1), except
that there are two more parameters L and PL to interpret the reference game:
a. L is the set of (equivalence classes of) possible lexica (i.e. L1,L2, · · · ∈ L, where Li is

a possible lexicon).
b. PL is the prior probability distribution over lexica, which is a uniform distribution over

all |L| logically possible lexica.

With this new formation, we need to update the formulae as well, in which we condition not only on
the message but also on the lexicon, allowing the agents to reason about distributions over different
lexica:

(4) a. For the literal listener L0, PL0
remains unchanged (see (2)).

b. PS(m|r,L) ∝ eα·log(PL0
(r|m,L)+C(m))

c. PL(r|m) ∝
∑
L PL · P (r) · PS(m|r,L)

In fact, the two rational agents (speaker and listener) are modeling each other and this process can
keep going until the listener stop reasoning about the speaker’s intention [1]. We may then generalize
the model to make it recursive to capture this behavior. The modification is straightforward:

(5) a. PSn
(m|r,L) ∝ eα·log(PLn−1

(r|m,L)+C(m))
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b. PLn(r|m) ∝
∑
L PL · P (r) · PSn−1(m|r,L)

As n goes to infinity, we would expect the model to reach the fixed point, if there is any.

2.2 Code

The skeleton of the code is adapted from [5], which is the Python implementation of the basic RSA
model as defined by 1 and 2. With this implementation as the starting point, I implemented the lexical
uncertainty RSA model as an extension.

Implementation details

The new model is implemented in the way that is able to run the basic RSA model as well as the
lexical uncertainty RSA model. To run the basic model, there is no additional action needed. If
we want to apply the lexical uncertainty model, then we need to set mode=‘bergen’ and feed data
into lexica as well as lexica_num. The input of lexica is a list of dataframes. Each dataframe
contains the truth values {0, 1} with messages (msgs) along the rows and states/worlds (states)
along the columns. There are lexica_num ∈ Z+ of such dataframe in each lexica. This number is
exactly the cardinality of L defined in (3a), which represents the number of all possible lexica and
can be computed ahead1. The rest of the model arguments are shared by the two models: we need to
provide the (state) prior distribution P , the costs of messages C and pragmatic inference strength
parameter α, storing in prior, costs and alpha respectively.

In the original code, class RSA takes in lexicon, prior, costs and alpha, and can then compute
literal listener L0 predictions PL0 using the member function literal_listener. Likewise, we can
get the pragmatic speaker predictions PS and the pragmatic listener predictions PL from speaker
and listener, respectively.

To get the lexical uncertainty listener predictions, I introduce two new member functions to class
RSA:

• def bergen_lexical_uncertainty_listener(self):
This function reads in self.lexica, self.lexica_prior and self.prior, iteratively
computes the literal listener predictions PL0

(r|m,L) using literal_listener and the
(first level) pragmatic speaker predictions PS1

(m|r,L) using speaker, given a lexicon
L. Then it sums up the results from each iteration and calculates the (first level) lexical
uncertainty listener predictions PL1(r|m).

• def run_lu_model(self):
This is the helper function to get the predictions from the lexical uncertainty RSA model. It
calls bergen_lexical_uncertainty_listener, speaker and listener in a sequence.
It returns a list of predictions: the first level lexical uncertainty listener predictions PL1

(r|m),
the second level pragmatic speaker predictions PS2(m|r,L) reasoning on PL1(r|m), and the
second level lexical uncertainty listener PL2(r|m). In fact, we can keep this back-and-forth
procedure to get higher level predictions.

3 Results

Before going into the examples, we first assume the following notations for the quantificational
determiners:

(6) a. JnoK = λf(λg(T if {x : f(x) = T} ∩ {x : g(x) = T} = ∅, else F))
b. JeveryK = λf(λg(T if {x : f(x) = T} ⊆ {x : g(x) = T}, else F))
c. J(at least) someK = λf(λg(T if {x : f(x) = T} ∩ {x : g(x) = T} 6= ∅, else F))
d. Jsome but not allK = λf(λg(T if {x : f(x) = T} ∩ {x : g(x) = T} 6= ∅ and {x :

f(x) = T} * {x : g(x) = T}, else F))

We then define the refinement sets for the lexical items that appear later in this section, following the
notion in [2, 6]:

1We will discuss this in the next section in detail.
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(7) a. Let ϕ be a set-denoting expression. R is a refinement of ϕ if and only if R 6= ∅ and
R ∈ JϕK.

b. Rc(ϕ), the set of refinements for ϕ in context c, is constrained so that JϕK ∈ Rc(ϕ) and
Rc(ϕ) ⊆ ℘(JϕK)−∅.

(8) Assuming there is only one person, Alice, in our context:
a. Rc(Alice) = {JAliceK}
b. Rc(scored) = {JscoredK, Jscored and didn’t aceK}
c. Rc(aced) = {JacedK}

(9) Assuming there are only two people, Alice and Bob, in our context:
a. Rc(Alice) = {JAliceK, Jonly AliceK}
b. Rc(Bob) = {JBobK, Jonly BobK}
c. Rc(some) = {J(at least) someK, Jsome but not allK}
d. Rc(every) = {JeveryK}
e. Rc(no) = {JnoK}
f. Rc(scored) = {JscoredK, Jscored and didn’t aceK}
g. Rc(aced) = {JacedK}

Based on these assumptions, we can generate labels for possible states and find possible lexica. In (8),
the possible states are N (no score at all), S (scored but not aced) and A (aced). Since the refinement
set for ‘scored’ has two elements, there are two possible lexica: (i) When we say someone ‘scored’,
we allows the case that ‘he/she aced’ to be true; (ii) When we say someone ‘scored’, we strictly
rule out the case that ‘he/she aced’ (i.e. It is false). As mentioned before, we assume uniform prior
distribution (P ) and uniform lexica prior distribution (PL). Setting C(0) = 5 and C(m) = 0 for the
other messages, we can replicate the results in [6] (rounded to the nearest hundredth):

M

N S A
scored 0 1.00 1.00
aced 0 0 1.00

0 1.00 1.00 1.00

N S A
scored 0 1.00 0
aced 0 0 1.00

0 1.00 1.00 1.00

N S A
scored 0 0 1.00
aced 0 0 1.00

0 1.00 1.00 1.00

L0

N S A
scored 0 0.5 0.5
aced 0 0 1

0 0.33 0.33 0.33

N S A
scored 0 1 0
aced 0 0 1

0 0.33 0.33 0.33

N S A
scored 0 0 1
aced 0 0 1

0 0.33 0.33 0.33

S1

scored aced 0
N 0 0 1.00
S 1.00 0 0.00
A 0.33 0.67 0.00

scored aced 0
N 0 0 1.00
S 1.00 0 0
A 0 1.00 0

scored aced 0
N 0 0 1.00
S 0 0 1.00
A 0.50 0.50 0.0

L1 (lexical uncertainty listener)

N S A
scored 0 0.71 0.29
aced 0 0 1.00

0 0.75 0.25 0.00

If we add one more pair of layers of reasoning, we can observe that the predictions start to converge
to some fixed point (rounded to the nearest hundredth):

L2

N S A

scored 0 0.81 0.19

aced 0 0 1.00

0 1.00 0.00 0.00

L3

N S A

scored 0 0.86 0.14

aced 0 0 1.00

0 1.00 0.00 0.00

L4

N S A

scored 0 0.89 0.11

aced 0 0 1.00

0 1.00 0.00 0.00

In this way, the lexical uncertainty RSA model is able to predict that when the listener hears ‘Alice
scored’, he or she assumes that the most possible state is S and that when the message is null, he or
she assumes that the most possible state is N. We also observe that there are probabilities that are
not equal to 1, which means the lexical uncertainty remains. However, if the rational agents keep
reasoning on each other, eventually the probability of the most possible state will be close to 1, as
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shown in the tables for L2, L3, L4. Meanwhile, if we further assume the listener makes a categorical
decision, then the model has no problem choosing the state that is of the highest predicted probability.

The next example (9) is more complicated. The semantic meanings of the quantificational determiners
follow the assumptions stated in (6). Similar to what we did for (8), we first generate labels for
possible states and possible lexica. The meaning of N, S, A are as defined previously. The label NN
means that both Alice and Bob had no score at all, the label SA means that Alice scored but didn’t
ace and Bob aced, and etc. All 9 possible states are NN NS NA SN SS SA AN AS AA. Since each
of the refinement sets for the person, ‘some’ and ‘scored’ has two elements, the total number of
possible lexica is 2× 2× 2 = 8 and they are formed by taking combinations of different elements
from each refinement set (see Appendix for details). Again, we assume uniform prior distribution (P )
and uniform prior distribution (PL). Setting C(0) = 5 and C(m) = 0 for the other messages, we get
the following predictions for the first level lexical uncertainty listener (rounded up to the hundredth):

NN NS NA SN SS SA AN AS AA
Alice scored. 0 0 0 0.42 0.19 0.22 0.12 0.03 0.02
Alice aced. 0 0 0 0 0 0 0.50 0.40 0.10
Bob scored. 0 0.43 0.12 0 0.10 0.04 0 0.29 0.02
Bob aced. 0 0 0.49 0 0 0.42 0 0 0.09
Some person scored. 0 0.28 0.09 0.28 0.06 0.09 0.09 0.09 0.02
Some person aced 0 0 0.25 0 0 0.22 0.25 0.21 0.06
Every person scored. 0 0 0 0 0.62 0.15 0 0.13 0.10
Every person aced. 0 0 0 0 0 0 0 0 1.00
No person scored. 0.65 0 0.15 0 0 0 0.15 0 0.04
No person aced. 0.28 0.27 0 0.27 0.18 0 0 0 0
0 0.15 0.14 0.11 0.14 0.10 0.10 0.11 0.10 0.07

We may also compute the second or higher level lexical uncertainty listener predictions. The pattern
is similar to what we’ve observed in example (8): the predicted probabilities are converging to some
fixed points.

The overall pattern of the lexical uncertainty listener predictions shown in the table above is consistent
with Table 4 in [6], except for some numerical differences that may come from different parameter
settings (i.e. costs C and number of layers). According to our predictions, when the listener hears
‘Alice scored’, he or she assumes that SN-‘Alice scored but not aced and Bob didn’t score at all’ is the
most possible intended meaning, which matches our intuition. When the listener hears ‘Some person
scored’, our model suggests that he or she assumes that NS-‘Alice didn’t score at all and Bob scored
but not aced’ and SN-‘Alice scored but not aced and Bob didn’t socre at all’ are the two most possible
states and there should be no preference between these two states. This is also reasonable, because in
real life, ‘Alice scored’ and ‘Bob scored’ contribute equivalently to the statement that ‘Some person
scored’ and we don’t actually care who scored.

We expected the predictions on ‘Alice scored’ and ‘Bob scored’ (and on ‘Alice aced’ and ‘Bob aced’)
should be symmetric. However, the results I got (presented above) are not symmetric, even though
they’re very close to each other. My assumption is that I might make some mistakes when assigning
the truth values to the entries.

4 Conclusion and Future Work

The lexicon uncertainty RSA model is able to play with cases where there are lexical uncertainties
introduced by the embedded scalar implicatures, as we’ve shown in examples (8) and (9). In addition,
if we keep this back-and-forth reasoning going, the predictions will converge to fixed points. We may
apply this model to other examples as well. For example, we can make predictions on sentences that
contain numbers: given three entities 1, 2, and 3, in different lexica, JoneK, JtwoK, JthreeK might be
interpreted differently [2]. We may also use this model to simulate the division of pragmatic labor
generalization that is problematic for the basic RSA model.

Currently, it is time-consuming to come up with possible lexica and assign corresponding truth values
to each (lexicon, message, states)-tuple. Meanwhile, it is easy to make mistakes when doing
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this manually. Therefore, one potential improvement for this project would be writing the script
to automatically generate possible lexica as well as possible states and then assign truth values to
them. It is also very interesting to see if there is a way to construct a learned/neural RSA with lexical
uncertainty and how good the results would be.
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A Example Lexicon for (9)
(10) Lexicon:

a. JsomeK is defined as ‘at least some’ (see (6c)).
b. JscoredK means ‘scored but didn’t ace’.
c. JAliceK doesn’t mean ‘only Alice’ (and same for JBobK).

Then the truth values should be:

NN NS NA SN SS SA AN AS AA
Alice scored. 0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0
Alice aced. 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0
Bob scored. 0.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0
Bob aced. 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0
Some person scored. 0.0 1.0 1.0 1.0 0.0 0.0 1.0 0.0 0.0
Some person aced 0.0 0.0 1.0 0.0 0.0 1.0 1.0 1.0 0.0
Every person scored. 0.0 0.0 0.0 0.0 1.0 1.0 0.0 1.0 1.0
Every person aced. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
No person scored. 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
No person aced. 1.0 1.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0
0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
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