
Text to Artistic Image Generation using GANs

Yuxing Chen
Symbolic Systems Program
yxchen28@stanford.edu

Zhefan Wang
Department of Electrical Engineering

zwang141@stanford.edu

Abstract

Given an input sentence and a desired style, we build
a system which can generate both a photo-like image and
a synthetic image whose content matches the sentence de-
scription and style matches the target style. Considering
the limited time and GPU resource, we believe we achieved
decently well results.

1. Introduction

Generating images from texts has been a trending re-
search topic in computer vision. Style transferring between
photos and artwork is also a popular subfield. We build an
application that combines these two, which allows the user
to not only generate ordinary photo-like images from sen-
tences, but also get the certain artistic style of images spec-
ified by the user.

To be more specific, our algorithm needs two inputs. The
first input is a sentence that describes the scene we want to
generate. The second input is an artistic style to be applied.
We first feed the input sentence to a two-stage GAN that
generates a realistic photo-like image. Then, we feed this
photo-like image to the image transfer network to get the
desired stylized output image. Note that the image transfer
network is trained per style images. Therefore, user should
only select a style image in the given list of choices.

2. Related Work

Much work has been done in text-to-image generation.
In [9], Reed et al. discussed different approaches to em-
bedding images and fine-grained visual descriptions jointly.
Reed et al. proposed a novel deep architecture and GAN
formulation to generate plausible images from detailed text
descriptions [10]. Zhang et al. improved the quality of the
synthesized photo-realistic images using Stacked Genera-
tive Adversarial Networks (StackGAN) [19]. Xu et al. built
an Attention Generative Adversarial Network (AttnGAN)
to address the problem that images generated using GANs
conditioning on the global sentence vector lack essential

fine-grained word-level information [17].
Image transformation is also a heavily researched area in

recent years. Gatys et al. [4] performs image style transfer
by jointly minimizing the feature reconstruction loss of [8]
and the style reconstruction loss of [2]. Their approach pro-
duces high-quality results, but suffer from very high com-
putational cost since inference requires solving an optimiza-
tion problem. Johnson et al. proposed an approach to solve
the optimization problem in real-time[5]. They trained a
feed-forward network that generates qualitatively similar
results to that of Gatys in three orders of magnitude shorter
time. Ulyanov et al. shows in [16] that substitute batch
normalization with instance normalization both at training
and testing times in the stylization architecture results in
a significant qualitative improvement in the generated im-
ages. One potential shortcoming of all these approaches is
that these algorithms alter the colors of the original paint-
ing. Specifically, as a byproduct of style transfer, colors of
the stylized images look alike the colors of the style image,
which may change the appearance of the scene in undesir-
able ways. Gatyes et al. presents two linear methods for
transferring style while preserving colors in [3].

3. Methods
The system can be decomposed into two parts: a text-

to-image generator and a style transferrer. User input is fed
into the text-to-image generator. The generator produces an
intermediate photo-like image result. The style transferrer
then takes in the intermediate result and produces the final
synthetic stylish image.

3.1. Text to Image Generation

Text Encoder

The first challenge is to correctly connect the content of im-
ages and the natural language concepts in the correspond-
ing text descriptions. As mentioned in the previous section,
a widely-applied way of encoding text descriptions is to
use deep convolution and recurrent text encoder (i.e. char-
CNN-RNN model) which learn the correspondence func-
tion with images [9, 10]. The idea of this approach is that

1

an recurrent neural network is stacked on top of a temporal
convolutional neural network hidden layer. This helps pre-
vent the drawback of lacking temporal dependencies along
the input word sequence when only using CNN, preserv-
ing the advantage that low-level temporal features can be
learned fast and efficiently. Figure 1 visualizes the architec-
ture of this text encoder.

Figure 1. The architecture of char-CNN-RNN text encoder [9]

The objective function that we want to optimize is de-
fined as follows [9, 10]:

1

N

N∑
n=1

∆(yn, fv(vn)) + ∆(yn, ft(tn))

, where vn ∈ V is the visual information in the dataset,
tn ∈ T is the text description, and yn ∈ Y is the class
label. ∆ is the 0-1 loss. fv, ft are image and text classifiers,
respectively, which are formulated as:

fv(v) = argmax
y∈Y

Et∼T (y)[θ(v)Tψ(t)]

ft(t) = argmax
v∈V

Ev∼T (y)[θ(v)Tψ(t)]

Here, θ(v) is the image encoder, and ψ(t) is the text en-
coder.

In the original paper [9], Reed et al. compared sev-
eral different encoding models, including word2vec, BOW
(bag-of-words), char-CNN-RNN model, word-CNN-RNN
model, and etc. Here we choose to use char-CNN-RNN
model, the same encoder as used in the Generative Adver-
sarial Text-to-Image Synthesis project [10].

Conditioning Augmentation

Conditioning augmentation technique is designed to deal
with the discontinuity in the latent data manifold when the
amount of data is limited [19]. This discontinuity comes
from the fact that the latent space for text embeddings
is high-dimensional, while we transform text embeddings
nonlinearly to get the conditioning latent variables (which
are the inputs of the generator). By using additional condi-
tioning variables ĉ, we introduce randomness to the model.
ĉ are sampled from an independent Gaussian distribution

N (µ(φt),Σ(φt)), where φt represents the text embedding.
We also use the Kullback-Leibler divergence to preserve
smoothness and avoid the overfitting problem [1, 6].

StackGAN

The network has two stages. Stage-I GAN sketches the
primitive shape and colors of the object based on the text
description, yielding low-resolution images. Stage-II GAN
takes Stage-I results and text descriptions, and generates
high-resolution images with more realistic details.

Let t be the text description for the real image I0, φt
be the text embeddings of the given description and z be
a noise vector randomly sampled from a given distribution
pdata. The Gaussian conditioning variables ĉ0 for text em-
beddings are sampled fromN (µ0(φt),Σ0(φt)). Denote the
Stage-I GAN discriminator asD0 and the Stage-I GAN gen-
erator as G0. We train D0 and G0 by maximizing LD0

and
minimizing LG0

, alternatively:

LD0 = E(I0,t)∼pdata
[logD0(I0, φt)]

+ Ez∼pz,t∼pdata
[log(1−D0(G0(z, ĉ0), φt))],

LG0
= Ez∼pz,t∼pdata

[log(1−D0(G0(z, ĉ0), φt))]

+ λDKL(N (µ0(φt),Σ0(φt))||N (0, I)),

where DKL is the Kullback-Leibler divergence and λ is a
regularization parameter.

Stage-II GAN is built upon the results of Stage-I GAN.
Let s0 = G0(z, ĉ0) be the low-resolution result from Stage-
I, ĉ be the Gaussian latent variables, D be the Stage-II dis-
criminator and G be the Stage-II generator. Then, D and G
are trained by maximizing LD and minimizing LG, alterna-
tively:

LD = E(I,t)∼pdata
[logD(I, φt)]

+ Es0∼pG0
,t∼pdata

[log(1−D(G(s0, ĉ), φt))],

LG = Es0∼pG0
,t∼pdata

[log(1−D(G(s0, ĉ), φt))]

+ λDKL(N (µ(φt),Σ(φt))||N (0, I)).

Figure 2. The architecture of the proposed StackGAN [19]

The overall architecture is shown in figure 2. Each up-
sampling block contains the nearest-neighbor up-sampling

2

followed by a 3 × 3 stride 1 conv2d layer, Batch normal-
ization and ReLU activation. Residual block consists of a
3× 3 stride 1 conv2d layer followed by Batch normaliza-
tion, ReLU activation, another 3×3 stride 1 conv2d layer,
Batch normalization and ReLU activation. Each down-
sampling block has a 4×4 stride 2 conv2d layer, followed
by Batch normalization and LeakyReLU, except that the
first down-sampling block does not contain Batch normal-
ization.

3.2. Style Transfer

Figure 3. Style Transfer System

As discussed in [5], one common approach to solve im-
age transformation tasks is to train a feed-forward CNN us-
ing per-pixel loss function that measures the difference be-
tween output and ground-truth images. Such approach is
fast to run at test-time but the per-pixel loss cannot capture
perceptual differences between output and ground-truth im-
ages. In parallel, recent work such as [4] shows that im-
ages can be generated using perceptual loss functions based
on differences between high-level image feature representa-
tions extracted from pretrained CNNs. Such approach can
produce high-quality images, but is very slow due to infer-
ence requiring solving an optimization problem.

To combine the benefits of both methods and avoid the
mentioned disadvantages, we followed the work [5] and
trained a style transfer system as shown in 3. The system
consists of two parts: an image transformation network and
a lost network. Instead of using a per-pixel loss function
or solving an inference problem, a perceptual loss func-
tion that depends on high-level features from a pretrained
loss network (VGG-16) is defined. At test-time, the image
transform net runs in real-time to generate stylized output
images.

• Image transformation network: The exact architecture
is shown in figure 4. The network essentially down-
samples and then upsamples the input image. All con-
volution layers are immediately followed by batch nor-
malization and ReLU activation. Except that the output
layer uses a scaled tanh activation function such that
the output values are in the range [0, 255].

• Loss network: This network is the 16-layer pretrained
VGG network. It remains fixed during training, ie.

weights are not updated upon back propagation. It ex-
amines the perceptual differences in content and style
between images. Denote the loss network as φ, input
images as x and output images as ŷ via the mapping
ŷ = fW (x). Each `i calculates the difference between
output image ŷ and target image yi (yi is either the
input content image or the input style image). The
loss function that captures both style loss and feature
(ie.content) loss is define as:

W∗ = argmin
W

Ex,yi
[∑

i

λi`i(fW (x), yi)
]

To be more specific, define the j-th feature map in the
loss net as φj of shape Cj×Hj×Wj . The feature loss
is defined as:

`φ,jfeat(ŷ, y) =
1

CjHjWj
‖φj(ŷ)− φj(y)‖2

As for the style loss, Gram matrices is used to measure
the difference between target style and the predicted
images:

`φ,jstyle(ŷ, y) = ‖Gφj (ŷ)−Gφj (y)‖2F

Here Gφj is a Cj × Cj Gram matrix whose elements
are given by:

Gφj (x)c,c′ =
1

CjHjWj

Hj∑
h=1

Wj∑
w=1

φj(x)h,w,cφj(x)h,w,c′

As shown in figure 3, the overall loss function used by
[5] is:

Loss = λc · `φ,relue3 3
feat (ŷ, yc) + λs · (`φ,relue1 2

style (ŷ, ys)

+ `φ,relue2 2
style (ŷ, ys) + `φ,relue3 3

style (ŷ, ys)

+ `φ,relue4 3
style (ŷ, ys))

Figure 4. Architecture used for style transfer network

This is our prototype model. We then did two optimiza-
tions on top of it.

3

• Replace all batch normalization with instance normal-
ization both at training and testing times in the image
transform net. This leads to a huge qualitative im-
provement in the generated images.

• Optionally preserve the colors of the original image:

As a byproduct of style transfer, colors of the styl-
ized images look alike the colors of the style image,
which very often changes the appearance of the scene
in undesirable ways. Luckily, we come up a quick fix.
Visual perception is far more sensitive to changes in
luminance than in colors. We decomposed the style
transfered image ŷ and the content image yc into three
separate channels in HUV space. Denote them as ĉ1,
ĉ2, ĉ3 and ccont1, ccont2, ccont3. Then combining ĉ1,
ccont2, and ccont3 gives a stylized image that preserves
the original color.

4. Dataset and Features
We perform experiments on Microsoft COCO dataset.

It contains 328,000 images with 5 captions per image and
91 object categories [7]. For our project, we use the 2014
dataset with an 80K/40K train/val split.

4.1. Text to Image Generation

Due to speed and memory limit of Google Cloud service,
we decide to select 40,000 out of 82,783 examples from the
2014 training set. The size of the validation set is adjusted
accordingly to match our new training set. Figure 5 shows
one pair of training example:

Figure 5. Microsoft COCO dataset example

Before feeding image data into the image generator, we
preprocess each image by cropping the given image at a
random location with output size 64 × 64 and horizontally
flipping it randomly with fixed probability 0.5. Then we
convert it into a C × H × W torch.FloatTensor
in the range [0, 1] and normalize it using
Normalize((0.5,0.5,0.5),(0.5,0.5,0.5))
in the torchvision.transforms package.

4.2. Style Transfer

• As shown in 3, the style transfer system uses the pre-
trained VGG16 model provided in the Pytorch model
zoo. VGG16 is a 16-layer convolutional network for
large-scale image recognition and was used in the
ILSVRC-2014 competition [13].

• The style transfer system uses a subset of the 2014
train/val dataset. Specifically, the training set contains
8,000 images and the validation set contains 3,000 im-
ages. Annotation data is not needed.

All pre-trained models in Pytorch model zoo expect
input images normalized to mini-batches of 3-channel
RGB images of shape (3 x H x W), where H and
W are expected to be at least 224. The images
have to be loaded in to a range of [0, 1] and then
normalized using mean=[0.485, 0.456, 0.406] and
std=[0.229, 0.224, 0.225]. Thus we preprocess
each image by resizing and cropping the images
so that images fed into the network are 256 × 256
large. We then convert all images into C × H × W
torch.FloatTensor in the range [0, 1] and
normalize it using Normalize(mean=[0.485,
0.456, 0.406], std=[0.229, 0.224,
0.225]) in the torchvision.transforms
package.

5. Metrics, Experiments and Results

5.1. Expected Results

Given an arbitrary input sentence and a desired style im-
age, the system is expected to generate a synthetic image
whose content matches the sentence description and style
matches the target style.

5.2. Evaluation Metrics

1. Text to Image Generation: Work [11] proposed a nu-
merical assessment approach called “inception score”.
We plan to evaluate this metric on a large number of
random samples by directly use the pre-trained Incep-
tion model for COCO dataset. Inception score quanti-
tatively evaluates the performance of our model:

I = exp(ExDKL(p(y|x)||p(y))),

where x is a generated sample, and y is the label pre-
dicts by the Inception model [15, 19].

2. Style Transfer: Quantitative evaluation of artistic
style transfer is difficult. The loss contains many gram
matrices. This implies that the measurement and re-
ductions in loss is very much subjective to that partic-
ular image [14]. We examined many papers and none
of them proposed any quantitative measure that deter-
mines the overall effectiveness of the model. There-
fore, out primary evaluation of the style transfer sys-
tem will be qualitative. The ideal result is that the style
is adapted onto the content without overwhelming it.

4

http://cocodataset.org/#home
https://github.com/pytorch/vision/blob/master/torchvision/models/vgg.py

5.3. Experiments on StackGAN

Baseline

We first build our model upon the original architecture spec-
ified in the work of Zhang et al. [19]. Instead of using the
whole COCO 2014 train images as the training dataset, we
first select 2,000 images as our toy training dataset. The
StackGAN model is trained on the toy COCO dataset us-
ing preprocessed COCO char-CNN-RNN embeddings pro-
vided by Han Zhang [18]. We train the Stage-I GAN and the
Stage-II GAN for 50 epochs and 15 epochs, respectively.
The pattern of different losses [fig.6, fig.7] we got seems
reasonable:

Figure 6. Stage-I loss for toy set

Figure 7. Stage-II loss for toy set

However, samples generated from captions in COCO
validation set are really bad, as we can see in figure 8. We
find that a training set with only 2,000 examples is way too
small. We can hardly tell anything from the images gener-
ated by the model using our toy dataset, which motivates us
to increase the size of the training dataset to have 40,000
images and do experiments on it.

5.3.1 Hyper-parameters Choosing

We first fix Stage-II and train Stage-I GAN with Condition-
ing Augmentation for 40 epochs. Then we train Stage-II
GAN for another x epochs with fixed Stage-I GAN.

• Shared hyper-parameters between two stages: We set
the input text embedding dimension obtained from the

Figure 8. Samples Generated from Captions in Validation Set

text encoder to be 1024, and we set the dimension
for random noise vector as 100. The coefficient for
Kullback-Leibler divergence is 2.

• Hyper-parameters for Stage-I GAN: To begin with, we
set the learning rates for both the discriminatorD0 and
generator G0 to be 0.2× 10−3, which is the value sug-
gested by Zhang et al. in their work [19]. During the
training process, we adjust each learning rate every 10
epochs by multiplying 0.5. As we know, although high
learning rate makes the loss decrease faster, it may
also make our model get stuck at some point. In or-
der to avoid this issue, we choose to use decreasing
learning rates. The batch size is set to be 64. In [19],
they use 128 as the batch size. However, due to the
consideration of memory limit and smaller dataset, we
use 64 instead. The optimizer we use here is Adam
with betas=(0.5, 0.999). Since the purpose of
Stage-I GAN is to learn the rough shape and basic col-
ors conditioned on text descriptions, there is no need to
generate high-resolution images. Therefore, the size
of the image generated by Stage-I GAN is set to be
64× 64.

• Hyper-parameters for Stage-II GAN: Similar to what
we have in Stage-I GAN, we also use decreasing learn-
ing rates for both the discriminator D and the genera-
tor G for the same reason. The initial value of each is
0.2 × 10−3. After two epochs, the new learning rates
will be 0.15 × 10−3, and so on. We also use Adam
optimizer with betas=(0.5, 0.999). The batch
size is set to be 32. Since Stage-II GAN is much larger
and harder to train, we decide to use this value instead
of 40 as suggested in the code written by the original
authors of this paper [19].

5.3.2 Results

Figure 9 are some example results of different models.

5

http://images.cocodataset.org/zips/train2014.zip

• Model I: 50 epochs on Stage-I GAN training and 15
epochs on Stage-II GAN training. The toy dataset with
2,000 images is applied.

• Model II: 40 epochs only on Stage-I GAN training.
The training dataset contains 40,000 examples selected
from 2014 COCO training set.

• Model III: 40 epochs on Stage-I GAN training and 16
epochs on Stage-II GAN training. The training dataset
is the same as we used in Model II.

• Model IV: Pretrained model provided by the author of
StackGAN [19] with 90 epochs. The model is trained
on the full 2014 COCO training set.

Figure 9. Image generated from the same text description using
different models

As we can see from the figure above, there is an sig-
nificant improvement between the first two model, which
implies that in general GANs requires large dataset to train
on. The image generated by Model III (Stage-I + Stage-II
GANs) has higher resolution and more details (i.e. water
taps over the sink, the cabinet under the sink) than the im-
age generated by Model II (only Stage-I GAN). The image
generated by Model II seems to give better shape of the ob-
jects indicated in the text description, so people can easily
recognize that it might be a photo taken in the bathroom.

The table 1 below shows the inception score for each of
the models we trained.

Table 1. Inception Scores for Different Models
Model Name Inception Score (mean ± std)
Model I 1.7994797 ± 0.15638991
Model II 3.9063458 ± 0.37369365
Model III 3.5610385 ± 0.31590825
Model IV N/A

After analyzing the generated results, we find that our
current model did well in plotting the “background” indi-
cated in the text descriptions, while it often failed to “fill
in” the details of the human-like objects, as shown in figure
10. The top four are the real images, and the bottom four
are the fake image generated using Model III. For example,
the text description for the second image is “a man riding
on the back of a brown horse down the street.” We can eas-
ily tell that the fake image contains the “street” component,

and there is a shape of a certain type of animals like a cow
or a horse. However, “the man” and “the horse” are miss-
ing from the image, and it seems that they should fill in the
blank within that shape. The problem described above may
results from the fact that we performed the limited number
of epochs on training Stage-II GAN, but it still remains to
be verified.

Figure 10. Well-generated background, but losing the main char-
acters

5.4. Experiments on Style Transfer

5.4.1 Hyper-parameters

• lambda c = 1, lambda s varies from 1.9 × 105 to
4.8 × 106: This ratio is the most important hyper pa-
rameter. It has a heavy influence on the stylized im-
ages. loss = lambda c×content loss+ lambda s×
style loss. Fix lambda c = 1, the larger lambda s
is, the stronger the influence of the style image will be.
To make the style noticeable on the generated image,
different style images use very different ratios.

• Learning rate: 0.5× 10−3. Training at this rate results
in good outputs after decent number of ephocs. When
the learning rate is very large, loss explodes. When the
learning rate is too small, learning progress is slow.

• Optimizer: Adam appears to be good enough.

• Batch size: 4. Batch size of 8 results in out of memory
issue.

5.4.2 Results

Figures 11 shows the training losses of several styles. Fig-
ures 12,13 and 14 show some example results of the style
transfer system. The first row is input images from the val-
idation set. The second row is the style transferred images
with original color preserved. The third row is the style
transferred images without color preservation. The last row
is the style images.

6

We see that the image transfer net successfully adapted
the target style onto the content images. By tweaking the
ratio of lambda c to lambda s, we can have weaker or
stronger effects. We observe that the color of images on
the second row is very similar to the color of the first row
(ie. the content images), whereas the color of images on
the third row is very similar to the color of the bottom row
(ie. the style image). This proves that our color preservation
optimization technique works well in most cases. But there
are some images where color preservation doesn’t work that
well. For example, in figure 13, the images on the second
row are all darker than the content images. There are also
some white artifacts around some strokes. In future, we plan
to explore if there are better approaches to preserve color.
Specifically, we will try the different linear color transfor-
mation techniques proposed by Gatys et al. [3].

Figure 11. Example Style Transfer Loss

Figure 12. Top to bottom: validation images, transferred im-
age(color preserved vs not preserved) and style (Weeping Woman
by Pablo Picasso)

5.5. Overall Results

Now we combine the text generator and the style trans-
ferrer together. Figure 15 shows some validation set text
descriptions. Figures 16, 17 and 18 show the corresponding
synthetic photo-like images and various style transferred
images.

Figure 13. Top to bottom: validation images, transferred im-
age(color preserved vs not preserved) and style (Femme nue assise
by Pablo Picasso)

Figure 14. Top to bottom: validation images, transferred im-
age(color preserved vs not preserved) and style (Sketch on Google
of Einstein)

Figure 15. Some text description from validation set

6. Conclusion and Future Work
Given various input sentences and desired styles, we

generated pretty decent photo-like images and artistic im-
ages. However, there are still some problems, as mentioned
in the previous part 5.3.2. In our future work, we want
to compare our current models with other creative modesl
such as AttnGANs [17]. In recent works, some researchers
demonstrate improvements on StackGAN by using VisDial
dialogues along with MS COCO captions to generate im-
ages, as stated in the paper [12]. We may also run more
experiments to find better hyper-parameters for our models.
As for style transfer, we improved the performance of im-
age transform net by substituting batch normalization with

7

Figure 16. Top to bottom: validation images, transferred im-
age(color preserved vs not preserved) and style (Mosaic painting
on Google)

Figure 17. Top to bottom: validation images, transferred im-
age(color preserved vs not preserved) and style (Fabbrica a Horta
by Pablo Picasso)

Figure 18. Top to bottom: validation images, transferred im-
age(color preserved vs not preserved) and style (Sketch on Google
of Einstein)

instance normalization and we also provided a solution to
preserving the original colors. As analyzed in section 5.4.2,
as part of our future work, we want to find some even better
approaches that not only preserve color but also solve the
artifacts issue.

7. Contributions and Acknowledgements
7.1. Contributions

Yuxing Chen: Text-to-image generation using GANs
Zhefan Wang: Style transfer

• Collaborators: None

• Starter code:

– Some of the checkpoint store/reload code
are taken from Pytorch tutorial at https:
//github.com/pytorch/examples/
blob/master/imagenet/main.py.

– No code taken from assignment. Even for the
style transfer system, we already implemented
the prototype model one week before style trans-
fer was discussed in class.

– Code partially taken from Open-source projects
(similar architecture): https://github.
com/hanzhanggit/StackGAN-Pytorch.

– The code for computing inception scores
is partially (some python functions) adapted
from: https://github.com/tsc2017/
inception-score

– Open-source projects that we’ve
checked out: https://github.
com/cysmith/neural-style-tf,
https://github.com/eveningglow/
fast-style-transfer-pytorch,

References
[1] C. Doersch. Tutorial on variational autoencoders. arXiv

preprint arXiv:1606.05908, 2016.
[2] L. Gatys, A. S. Ecker, and M. Bethge. Texture synthesis

using convolutional neural networks. In Advances in Neural
Information Processing Systems, pages 262–270, 2015.

[3] L. A. Gatys, M. Bethge, A. Hertzmann, and E. Shecht-
man. Preserving color in neural artistic style transfer. arXiv
preprint arXiv:1606.05897, 2016.

[4] L. A. Gatys, A. S. Ecker, and M. Bethge. Image style transfer
using convolutional neural networks. In Computer Vision
and Pattern Recognition (CVPR), 2016 IEEE Conference on,
pages 2414–2423. IEEE, 2016.

[5] J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses for
real-time style transfer and super-resolution. In European
Conference on Computer Vision, 2016.

[6] A. B. L. Larsen, S. K. Sønderby, H. Larochelle, and
O. Winther. Autoencoding beyond pixels using a learned
similarity metric. arXiv preprint arXiv:1512.09300, 2015.

[7] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-
manan, P. Dollár, and C. L. Zitnick. Microsoft coco: Com-
mon objects in context. In European conference on computer
vision, pages 740–755. Springer, 2014.

8

 https://github.com/pytorch/examples/blob/master/imagenet/main.py
 https://github.com/pytorch/examples/blob/master/imagenet/main.py
 https://github.com/pytorch/examples/blob/master/imagenet/main.py
https://github.com/hanzhanggit/StackGAN-Pytorch
https://github.com/hanzhanggit/StackGAN-Pytorch
https://github.com/tsc2017/inception-score
https://github.com/tsc2017/inception-score
https://github.com/cysmith/neural-style-tf
https://github.com/cysmith/neural-style-tf
https://github.com/eveningglow/fast-style-transfer-pytorch
https://github.com/eveningglow/fast-style-transfer-pytorch

[8] A. Mahendran and A. Vedaldi. Understanding deep image
representations by inverting them. 2015.

[9] S. Reed, Z. Akata, H. Lee, and B. Schiele. Learning deep
representations of fine-grained visual descriptions. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 49–58, 2016.

[10] S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, and
H. Lee. Generative adversarial text to image synthesis. arXiv
preprint arXiv:1605.05396, 2016.

[11] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Rad-
ford, and X. Chen. Improved techniques for training gans. In
Advances in Neural Information Processing Systems, pages
2234–2242, 2016.

[12] S. Sharma, D. Suhubdy, V. Michalski, S. E. Kahou, and
Y. Bengio. Chatpainter: Improving text to image generation
using dialogue. arXiv preprint arXiv:1802.08216, 2018.

[13] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[14] G. J. Somshubra Majumdar, Amlaan Bhoi. A comprehensive
comparison between neural style transfer and universal style
transfer. 2018.

[15] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna.
Rethinking the inception architecture for computer vision.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2818–2826, 2016.

[16] D. Ulyanov, A. Vedaldi, and V. S. Lempitsky. Instance
normalization: The missing ingredient for fast stylization.
CoRR, abs/1607.08022, 2016.

[17] T. Xu, P. Zhang, Q. Huang, H. Zhang, Z. Gan, X. Huang, and
X. He. Attngan: Fine-grained text to image generation with
attentional generative adversarial networks. arXiv preprint
arXiv:1711.10485, 2017.

[18] H. Zhang. Stackgan-pytorch. https://github.com/
hanzhanggit/StackGAN-Pytorch, 2017.

[19] H. Zhang, T. Xu, H. Li, S. Zhang, X. Huang, X. Wang, and
D. Metaxas. Stackgan: Text to photo-realistic image synthe-
sis with stacked generative adversarial networks. In IEEE
Int. Conf. Comput. Vision (ICCV), pages 5907–5915, 2017.

9

https://github.com/hanzhanggit/StackGAN-Pytorch
https://github.com/hanzhanggit/StackGAN-Pytorch

